17,903 research outputs found

    Scalable Generation and Characterization of a Four-Photon Twelve-Qubit Hyperentangled State

    Full text link
    An experimentally feasible scheme for generating a 12-qubit hyperentangled state via four photons, entangled in polarization, frequency and spatial mode, is proposed. We study the nature of quantum non-locality of this hyperentangled state by evaluating its violation degree to a Bell-type inequality, and find that the result agrees well with quantum mechanics prediction while extremely contradicts to the local realism constraint.Comment: 14 pages, 6 Postscript figure

    Quantum Circuit Design for Solving Linear Systems of Equations

    Full text link
    Recently, it is shown that quantum computers can be used for obtaining certain information about the solution of a linear system Ax=b exponentially faster than what is possible with classical computation. Here we first review some key aspects of the algorithm from the standpoint of finding its efficient quantum circuit implementation using only elementary quantum operations, which is important for determining the potential usefulness of the algorithm in practical settings. Then we present a small-scale quantum circuit that solves a 2x2 linear system. The quantum circuit uses only 4 qubits, implying a tempting possibility for experimental realization. Furthermore, the circuit is numerically simulated and its performance under different circuit parameter settings is demonstrated.Comment: 7 pages, 3 figures. The errors are corrected. For the general case, discussions are added to account for recent results. The 4x4 example is replaced by a 2x2 one due to recent experimental efforts. The 2x2 example was devised at the time of writing v1 but not included in v1 for brevit

    Locking classical information

    Full text link
    It is known that the maximum classical mutual information that can be achieved between measurements on a pair of quantum systems can drastically underestimate the quantum mutual information between those systems. In this article, we quantify this distinction between classical and quantum information by demonstrating that after removing a logarithmic-sized quantum system from one half of a pair of perfectly correlated bitstrings, even the most sensitive pair of measurements might only yield outcomes essentially independent of each other. This effect is a form of information locking but the definition we use is strictly stronger than those used previously. Moreover, we find that this property is generic, in the sense that it occurs when removing a random subsystem. As such, the effect might be relevant to statistical mechanics or black hole physics. Previous work on information locking had always assumed a uniform message. In this article, we assume only a min-entropy bound on the message and also explore the effect of entanglement. We find that classical information is strongly locked almost until it can be completely decoded. As a cryptographic application of these results, we exhibit a quantum key distribution protocol that is "secure" if the eavesdropper's information about the secret key is measured using the accessible information but in which leakage of even a logarithmic number of key bits compromises the secrecy of all the others.Comment: 32 pages, 2 figure

    A very brief introduction to quantum computing and quantum information theory for mathematicians

    Full text link
    This is a very brief introduction to quantum computing and quantum information theory, primarily aimed at geometers. Beyond basic definitions and examples, I emphasize aspects of interest to geometers, especially connections with asymptotic representation theory. Proofs of most statements can be found in standard references

    Entanglement dynamics and quasi-periodicity in discrete quantum walks

    Full text link
    We study the entanglement dynamics of discrete time quantum walks acting on bounded finite sized graphs. We demonstrate that, depending on system parameters, the dynamics may be monotonic, oscillatory but highly regular, or quasi-periodic. While the dynamics of the system are not chaotic since the system comprises linear evolution, the dynamics often exhibit some features similar to chaos such as high sensitivity to the system's parameters, irregularity and infinite periodicity. Our observations are of interest for entanglement generation, which is one primary use for the quantum walk formalism. Furthermore, we show that the systems we model can easily be mapped to optical beamsplitter networks, rendering experimental observation of quasi-periodic dynamics within reach.Comment: 9 pages, 8 figure

    Matrix realignment and partial transpose approach to entangling power of quantum evolutions

    Full text link
    Based on the matrix realignment and partial transpose, we develop an approach to entangling power and operator entanglement of quantum unitary operators. We demonstrate efficiency of the approach by studying several unitary operators on qudits, and indicate that these two matrix rearrangements are not only powerful for studying separability problem of quantum states, but also useful in studying entangling capabilities of quantum operators.Comment: Four pages and no figure

    Three-Way Entanglement and Three-Qubit Phase Gate Based on a Coherent Six-Level Atomic System

    Full text link
    We analyze the nonlinear optical response of a six-level atomic system under a configuration of electromagnetically induced transparency. The giant fifth-order nonlinearity generated in such a system with a relatively large cross-phase modulation effect can produce efficient three-way entanglement and may be used for realizing a three-qubit quantum phase gate. We demonstrate that such phase gate can be transferred to a Toffoli gate, facilitating practical applications in quantum information and computation.Comment: 10 pages, 2 figure

    Hybrid solid state qubits: the powerful role of electron spins

    Full text link
    We review progress on the use of electron spins to store and process quantum information, with particular focus on the ability of the electron spin to interact with multiple quantum degrees of freedom. We examine the benefits of hybrid quantum bits (qubits) in the solid state that are based on coupling electron spins to nuclear spin, electron charge, optical photons, and superconducting qubits. These benefits include the coherent storage of qubits for times exceeding seconds, fast qubit manipulation, single qubit measurement, and scalable methods for entangling spatially separated matter-based qubits. In this way, the key strengths of different physical qubit implementations are brought together, laying the foundation for practical solid-state quantum technologies.Comment: 54 pages, 7 figure

    Geometric interpretation for A-fidelity and its relation with Bures fidelity

    Full text link
    A geometric interpretation for the A-fidelity between two states of a qubit system is presented, which leads to an upper bound of the Bures fidelity. The metrics defined based on the A-fidelity are studied by numerical method. An alternative generalization of the A-fidelity, which has the same geometric picture, to a NN-state quantum system is also discussed.Comment: 4 pages, 1 figure. Phys. Rev.
    • …
    corecore